Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

### Guanidinium L-glutamate

## Bing Peng, Qingrong Peng, Wenfeng Zhou\* and Zhiqiang Zhou‡

Department of Applied Chemistry, China Agricultural University, Yuanmingyuan, West Road 2, Haidian District, Beijing 100194, People's Republic of China Correspondence e-mail: wenfengzhou@cau.edu.cn

Received 31 August 2010; accepted 10 September 2010

Key indicators: single-crystal X-ray study; T = 150 K; mean  $\sigma$ (C–C) = 0.003 Å; *R* factor = 0.031; *wR* factor = 0.081; data-to-parameter ratio = 8.7.

In the title compound,  $CH_6N_3^+ \cdot C_5H_8NO_4^-$ , there are two independent cations and two independent anions in the asymmetric unit. In the crystal structure, cations and anions are linked by intermolecular  $N - H \cdots O$  hydrogen bonds into a three-dimensional network.

#### **Related literature**

For an early report of salts formed from amino acids and guanidines, see: Armstrong (1956).



#### **Experimental**

#### Crystal data

| CH <sub>6</sub> N <sub>3</sub> <sup>+</sup> ·C <sub>5</sub> H <sub>8</sub> NO <sub>4</sub> <sup>-</sup> |
|---------------------------------------------------------------------------------------------------------|
| $M_r = 206.21$                                                                                          |
| Monoclinic, P21                                                                                         |
| a = 8.7793 (7) Å                                                                                        |
| b = 10.8729 (10)Å                                                                                       |
| c = 10.0801 (9)  Å                                                                                      |
| $\beta = 104.552 \ (1)^{\circ}$                                                                         |
|                                                                                                         |

#### Data collection

Bruker SMART APEX diffractometer Absorption correction: multi-scan (SADABS; Sheldrick, 1996) T<sub>min</sub> = 0.950, T<sub>max</sub> = 0.976  $V = 931.34 (14) \text{ Å}^3$  Z = 4Mo K $\alpha$  radiation  $\mu = 0.12 \text{ mm}^{-1}$  T = 150 K $0.42 \times 0.26 \times 0.20 \text{ mm}$ 

5501 measured reflections 2220 independent reflections 2087 reflections with  $I > 2\sigma(I)$  $R_{\text{int}} = 0.021$  Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.031$  $wR(F^2) = 0.081$ S = 1.062220 reflections 255 parameters

 $\begin{array}{l} 1 \mbox{ restraint} \\ \mbox{H-atom parameters constrained} \\ \Delta \rho_{max} = 0.30 \mbox{ e } \mbox{ Å}^{-3} \\ \Delta \rho_{min} = -0.23 \mbox{ e } \mbox{ Å}^{-3} \end{array}$ 

| Table 1       |          |     |     |
|---------------|----------|-----|-----|
| Hydrogen-bond | geometry | (Å, | °). |

| $D - H \cdots A$                     | D-H  | $H \cdots A$ | $D \cdots A$ | $D - H \cdots A$ |
|--------------------------------------|------|--------------|--------------|------------------|
| N1-H1A····O8                         | 0.91 | 1.89         | 2.795 (2)    | 179              |
| $N1 - H1B \cdot \cdot \cdot O4^{i}$  | 0.91 | 1.84         | 2.738 (2)    | 170              |
| $N1 - H1C \cdot \cdot \cdot O2^{i}$  | 0.91 | 2.13         | 3.017 (2)    | 165              |
| $N2-H2A\cdots O2^{ii}$               | 0.91 | 2.09         | 2.998 (2)    | 173              |
| $N2-H2B\cdots O7^{iii}$              | 0.91 | 2.16         | 2.740 (2)    | 120              |
| $N2-H2C\cdots O5^{iii}$              | 0.91 | 1.92         | 2.817 (3)    | 170              |
| $N3-H3A\cdots O2^{i}$                | 0.88 | 2.08         | 2.900 (3)    | 154              |
| N3−H3 <i>B</i> ···O3                 | 0.88 | 2.08         | 2.841 (3)    | 145              |
| $N4-H4A\cdots O3^{iv}$               | 0.88 | 1.95         | 2.826 (2)    | 173              |
| $N4-H4B\cdotsO1^{i}$                 | 0.88 | 2.22         | 3.095 (2)    | 170              |
| $N5-H5A\cdots O4^{iv}$               | 0.88 | 1.96         | 2.831 (2)    | 172              |
| $N5-H5B\cdots O6$                    | 0.88 | 2.35         | 3.092 (3)    | 142              |
| $N6-H6A\cdots O6$                    | 0.88 | 2.04         | 2.897 (2)    | 165              |
| $N6-H6B\cdotsO8^{v}$                 | 0.88 | 1.97         | 2.824(2)     | 164              |
| $N7 - H7A \cdots O5$                 | 0.88 | 2.00         | 2.851 (2)    | 163              |
| $N7 - H7B \cdot \cdot \cdot O8^{vi}$ | 0.88 | 2.02         | 2.775 (3)    | 143              |
| $N8-H8A\cdots O7^{v}$                | 0.88 | 2.08         | 2.954 (3)    | 170              |
| $N8-H8B\cdotsO1^{vi}$                | 0.88 | 2.23         | 2.953 (3)    | 140              |

Symmetry codes: (i)  $-x + 1, y + \frac{1}{2}, -z$ ; (ii) x, y, z + 1; (iii)  $-x + 1, y - \frac{1}{2}, -z + 1$ ; (iv)  $-x + 2, y + \frac{1}{2}, -z + 1$ ; (v) x + 1, y, z + 1; (vi)  $-x + 1, y + \frac{1}{2}, -z + 1$ .

Data collection: *SMART* (Bruker, 1997); cell refinement: *SAINT* (Bruker, 1997); data reduction: *SAINT*; program(s) used to solve structure: *SHELXTL* (Sheldrick, 2008); program(s) used to refine structure: *SHELXTL*; molecular graphics: *PLATON* (Spek, 2009); software used to prepare material for publication: *SHELXTL*.

This work was supported by NSFC (project No. 20772210) and the Scientific Research Foundation for Returned Overseas Chinese Scholars, State Education Ministry. The authors acknowledge Dr Deng Xuebin for collecting the data at the Testing Center, College of Chemistry, Beijing Normal University.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LH5125).

#### References

Armstrong, M. D. (1956). J. Org. Chem. 21, 503-505.

Bruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.

Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.
Spek, A. L. (2009). Acta Cryst. D65, 148–155.

<sup>‡</sup> Additional corresponding author, e-mail: zqzhou@cau.edu.cn.

Acta Cryst. (2010). E66, o2679 [doi:10.1107/S1600536810036354]

### Guanidinium L-glutamate

### B. Peng, Q. Peng, W. Zhou and Z. Zhou

#### Comment

To better understand the formation of complex salts between a guanidine compounds and amino acids we carried out the crystal structure determination of the title compound. The asymmetric unit of the title compound is shown in Fig. 1. There are two independent cations and two indpendent anions in the asymmetric unit. In the crystal structure, cations and anions are linked by intramolecular N—H···O hydrogen bonds into a three-dimensional network (see Fig. 2).

#### **Experimental**

L-Glutamic acid (1.47 g.) and guanidine carbonate (0.90 g) were suspended in 10 ml of water. When the evolution of  $CO_2$  had ceased the solution was diluted with 20 ml of acetone, and evaporated to a clear syrup. The syrup was dissolved in 30 ml of absolute methanol to yield a clear solution, and was allowed to stand overnight at room temperature. This solution was then placed in a fume hood for another day, whereupon the crystals of the title compound were collected and dried.

#### Refinement

In the absence of significant anomalous dispersion effects Friedel pairs were merged. The absolute configuation is known from the starting material. H atoms were placed in calculated positions (C—H = 0.99 or 1.00 Å, N—H = 0.88 or 0.91 Å) and were refined as riding, with  $U_{iso}(H) = 1.2U_{eq}(C,N)$  or  $1.5_{eq}(N)$  for  $-NH_3$  groups.

#### **Figures**



Fig. 1. The asymmetric unit of the title compound with displacement ellipsoids drawn at the 30% probability level.



Fig. 2. Part of the crystal structure of the title compound with hydrogen bonds shown as dashed lines.

#### bis(carbamimidoylazanium) (2R)-2-aminopentanedioate

#### Crystal data

 $CH_6N_3^+ C_5H_8NO_4^-$ 

F(000) = 440

| $M_r = 206.21$                  |
|---------------------------------|
| Monoclinic, P21                 |
| Hall symbol: P 2yb              |
| <i>a</i> = 8.7793 (7) Å         |
| <i>b</i> = 10.8729 (10) Å       |
| c = 10.0801 (9)  Å              |
| $\beta = 104.552 \ (1)^{\circ}$ |
| $V = 931.34 (14) \text{ Å}^3$   |
| Z = 4                           |

#### Data collection

| Bruker SMART APEX<br>diffractometer                            | 2220 independent reflections                                              |
|----------------------------------------------------------------|---------------------------------------------------------------------------|
| Radiation source: fine-focus sealed tube                       | 2087 reflections with $I > 2\sigma(I)$                                    |
| graphite                                                       | $R_{\rm int} = 0.021$                                                     |
| $\varphi$ and $\omega$ scans                                   | $\theta_{\text{max}} = 27.5^{\circ}, \ \theta_{\text{min}} = 2.4^{\circ}$ |
| Absorption correction: multi-scan<br>(SADABS; Sheldrick, 1996) | $h = -11 \rightarrow 10$                                                  |
| $T_{\min} = 0.950, \ T_{\max} = 0.976$                         | $k = -14 \rightarrow 9$                                                   |
| 5501 measured reflections                                      | $l = -8 \rightarrow 13$                                                   |

#### Refinement

| Refinement on $F^2$             | Primary atom site location: structure-invariant direct methods                     |
|---------------------------------|------------------------------------------------------------------------------------|
| Least-squares matrix: full      | Secondary atom site location: difference Fourier map                               |
| $R[F^2 > 2\sigma(F^2)] = 0.031$ | Hydrogen site location: inferred from neighbouring sites                           |
| $wR(F^2) = 0.081$               | H-atom parameters constrained                                                      |
| <i>S</i> = 1.06                 | $w = 1/[\sigma^2(F_0^2) + (0.044P)^2 + 0.2149P]$<br>where $P = (F_0^2 + 2F_c^2)/3$ |
| 2220 reflections                | $(\Delta/\sigma)_{\rm max} < 0.001$                                                |
| 255 parameters                  | $\Delta \rho_{max} = 0.30 \text{ e} \text{ Å}^{-3}$                                |
| 1 restraint                     | $\Delta \rho_{min} = -0.22 \text{ e } \text{\AA}^{-3}$                             |

#### Special details

**Geometry**. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

**Refinement**. Refinement of  $F^2$  against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on  $F^2$ , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative  $F^2$ . The threshold expression of  $F^2 > \sigma(F^2)$  is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on  $F^2$  are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

 $D_x = 1.471 \text{ Mg m}^{-3}$ Mo K $\alpha$  radiation,  $\lambda = 0.71073 \text{ Å}$ Cell parameters from 2748 reflections  $\theta = 2.4-27.5^{\circ}$  $\mu = 0.12 \text{ mm}^{-1}$ T = 150 KPrism, colourless  $0.42 \times 0.26 \times 0.20 \text{ mm}$ 

|     | x          | У            | Ζ             | $U_{\rm iso}*/U_{\rm eq}$ |
|-----|------------|--------------|---------------|---------------------------|
| C1  | 0.3633 (2) | 0.4498 (2)   | -0.1328 (2)   | 0.0157 (4)                |
| C2  | 0.4808 (2) | 0.5516 (2)   | -0.06507 (19) | 0.0152 (4)                |
| H2  | 0.5234     | 0.5892       | -0.1389       | 0.018*                    |
| C3  | 0.6207 (2) | 0.5030 (2)   | 0.0442 (2)    | 0.0175 (4)                |
| H3C | 0.6924     | 0.5723       | 0.0803        | 0.021*                    |
| H3D | 0.6793     | 0.4434       | 0.0016        | 0.021*                    |
| C4  | 0.5727 (2) | 0.4405 (2)   | 0.1632 (2)    | 0.0185 (4)                |
| H4C | 0.4937     | 0.3761       | 0.1264        | 0.022*                    |
| H4D | 0.5227     | 0.5020       | 0.2111        | 0.022*                    |
| C5  | 0.7121 (2) | 0.3823 (2)   | 0.2661 (2)    | 0.0161 (4)                |
| C6  | 0.6284 (3) | 0.5883 (2)   | 0.6253 (2)    | 0.0170 (4)                |
| C7  | 0.5001 (2) | 0.5088 (2)   | 0.5315 (2)    | 0.0142 (4)                |
| H7  | 0.5153     | 0.5159       | 0.4368        | 0.017*                    |
| C8  | 0.3304 (2) | 0.5466 (2)   | 0.52340 (19)  | 0.0164 (4)                |
| H8C | 0.3259     | 0.6367       | 0.5357        | 0.020*                    |
| H8D | 0.2954     | 0.5067       | 0.5990        | 0.020*                    |
| С9  | 0.2181 (2) | 0.5106 (2)   | 0.3863 (2)    | 0.0171 (4)                |
| H9A | 0.2379     | 0.4240       | 0.3655        | 0.020*                    |
| H9B | 0.1083     | 0.5165       | 0.3946        | 0.020*                    |
| C10 | 0.2368 (2) | 0.5920 (2)   | 0.2679 (2)    | 0.0156 (4)                |
| C11 | 0.9131 (2) | 0.7443 (2)   | 0.4492 (2)    | 0.0176 (4)                |
| C12 | 0.9193 (3) | 0.7368 (2)   | 0.9641 (2)    | 0.0179 (4)                |
| N1  | 0.3944 (2) | 0.65067 (18) | -0.01100 (17) | 0.0155 (4)                |
| H1A | 0.3351     | 0.6164       | 0.0415        | 0.023*                    |
| H1B | 0.3307     | 0.6918       | -0.0823       | 0.023*                    |
| H1C | 0.4648     | 0.7040       | 0.0407        | 0.023*                    |
| N2  | 0.5301 (2) | 0.37747 (18) | 0.57395 (19)  | 0.0183 (4)                |
| H2A | 0.4960     | 0.3633       | 0.6507        | 0.027*                    |
| H2B | 0.6351     | 0.3617       | 0.5918        | 0.027*                    |
| H2C | 0.4774     | 0.3275       | 0.5052        | 0.027*                    |
| N3  | 0.7857 (2) | 0.6972 (2)   | 0.3634 (2)    | 0.0240 (4)                |
| H3A | 0.7411     | 0.7361       | 0.2870        | 0.029*                    |
| H3B | 0.7461     | 0.6272       | 0.3832        | 0.029*                    |
| N4  | 0.9733 (2) | 0.84922 (19) | 0.42024 (19)  | 0.0204 (4)                |
| H4A | 1.0578     | 0.8797       | 0.4770        | 0.024*                    |
| H4B | 0.9288     | 0.8887       | 0.3441        | 0.024*                    |
| N5  | 0.9797 (2) | 0.68433 (19) | 0.5639 (2)    | 0.0215 (4)                |
| H5A | 1.0643     | 0.7145       | 0.6209        | 0.026*                    |
| H5B | 0.9394     | 0.6144       | 0.5829        | 0.026*                    |
| N6  | 0.9603 (2) | 0.62410 (19) | 0.9389 (2)    | 0.0242 (4)                |
| H6A | 0.9036     | 0.5832       | 0.8682        | 0.029*                    |
| H6B | 1.0442     | 0.5899       | 0.9926        | 0.029*                    |
| N7  | 0.7924 (2) | 0.78798 (19) | 0.88260 (19)  | 0.0222 (4)                |
| H7A | 0.7361     | 0.7467       | 0.8121        | 0.027*                    |
| H7B | 0.7648     | 0.8631       | 0.8991        | 0.027*                    |

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters  $(\hat{A}^2)$ 

| N8  | 1.0012 (2)   | 0.8000 (2)   | 1.0716 (2)    | 0.0248 (5) |
|-----|--------------|--------------|---------------|------------|
| H8A | 1.0844       | 0.7668       | 1.1274        | 0.030*     |
| H8B | 0.9721       | 0.8751       | 1.0868        | 0.030*     |
| 01  | 0.22034 (18) | 0.47085 (14) | -0.15334 (15) | 0.0197 (3) |
| O2  | 0.42560 (19) | 0.35290 (15) | -0.16612 (15) | 0.0206 (3) |
| O3  | 0.76473 (19) | 0.43703 (16) | 0.37806 (16)  | 0.0221 (4) |
| O4  | 0.76678 (19) | 0.28334 (16) | 0.23297 (16)  | 0.0236 (4) |
| O5  | 0.6030 (2)   | 0.70163 (15) | 0.62702 (17)  | 0.0234 (4) |
| O6  | 0.75073 (18) | 0.53379 (16) | 0.68837 (16)  | 0.0225 (4) |
| O7  | 0.2657 (2)   | 0.70271 (16) | 0.28796 (17)  | 0.0277 (4) |
| O8  | 0.21550 (17) | 0.54149 (15) | 0.15054 (14)  | 0.0184 (3) |
|     |              |              |               |            |

## Atomic displacement parameters $(Å^2)$

|     | $U^{11}$    | $U^{22}$    | $U^{33}$    | $U^{12}$    | $U^{13}$    | $U^{23}$    |
|-----|-------------|-------------|-------------|-------------|-------------|-------------|
| C1  | 0.0218 (10) | 0.0148 (10) | 0.0098 (9)  | -0.0013 (8) | 0.0027 (8)  | 0.0026 (8)  |
| C2  | 0.0177 (9)  | 0.0146 (10) | 0.0126 (8)  | -0.0017 (8) | 0.0025 (7)  | -0.0002 (8) |
| C3  | 0.0153 (9)  | 0.0193 (10) | 0.0165 (10) | 0.0003 (9)  | 0.0013 (8)  | -0.0003 (8) |
| C4  | 0.0159 (10) | 0.0222 (12) | 0.0161 (10) | 0.0029 (9)  | 0.0017 (8)  | -0.0005 (9) |
| C5  | 0.0153 (9)  | 0.0163 (10) | 0.0158 (10) | 0.0001 (8)  | 0.0024 (8)  | 0.0010 (8)  |
| C6  | 0.0180 (10) | 0.0187 (11) | 0.0135 (9)  | -0.0030 (9) | 0.0024 (8)  | 0.0002 (8)  |
| C7  | 0.0177 (9)  | 0.0134 (10) | 0.0110 (9)  | 0.0014 (8)  | 0.0023 (7)  | 0.0009 (8)  |
| C8  | 0.0167 (9)  | 0.0203 (10) | 0.0115 (9)  | 0.0013 (8)  | 0.0024 (7)  | 0.0006 (8)  |
| C9  | 0.0166 (9)  | 0.0184 (10) | 0.0151 (9)  | -0.0024 (8) | 0.0021 (7)  | 0.0000 (8)  |
| C10 | 0.0126 (9)  | 0.0167 (10) | 0.0155 (10) | 0.0014 (8)  | -0.0005 (7) | 0.0014 (8)  |
| C11 | 0.0169 (10) | 0.0180 (11) | 0.0182 (10) | 0.0029 (8)  | 0.0048 (8)  | -0.0029 (8) |
| C12 | 0.0186 (10) | 0.0176 (11) | 0.0169 (10) | 0.0009 (8)  | 0.0035 (8)  | 0.0015 (8)  |
| N1  | 0.0186 (8)  | 0.0142 (8)  | 0.0122 (8)  | -0.0007 (7) | 0.0008 (6)  | 0.0010 (7)  |
| N2  | 0.0202 (9)  | 0.0136 (9)  | 0.0184 (9)  | 0.0008 (7)  | -0.0003 (7) | -0.0010 (7) |
| N3  | 0.0246 (10) | 0.0203 (10) | 0.0214 (9)  | -0.0026 (8) | -0.0052 (8) | 0.0023 (8)  |
| N4  | 0.0205 (9)  | 0.0211 (10) | 0.0172 (9)  | -0.0025 (8) | 0.0001 (7)  | 0.0001 (8)  |
| N5  | 0.0189 (9)  | 0.0211 (10) | 0.0206 (9)  | -0.0030 (8) | -0.0024 (7) | 0.0020 (8)  |
| N6  | 0.0237 (10) | 0.0209 (11) | 0.0233 (10) | 0.0065 (8)  | -0.0028 (8) | -0.0031 (8) |
| N7  | 0.0240 (10) | 0.0171 (9)  | 0.0209 (9)  | 0.0043 (8)  | -0.0032 (8) | -0.0035 (8) |
| N8  | 0.0284 (10) | 0.0203 (11) | 0.0195 (9)  | 0.0056 (8)  | -0.0057 (8) | -0.0024 (8) |
| 01  | 0.0183 (7)  | 0.0212 (9)  | 0.0175 (7)  | -0.0006 (6) | 0.0010 (6)  | -0.0013 (6) |
| O2  | 0.0253 (8)  | 0.0183 (8)  | 0.0167 (8)  | 0.0026 (7)  | 0.0024 (6)  | -0.0035 (6) |
| O3  | 0.0235 (8)  | 0.0218 (9)  | 0.0171 (8)  | 0.0053 (7)  | -0.0020 (6) | -0.0046 (7) |
| O4  | 0.0253 (8)  | 0.0208 (8)  | 0.0199 (8)  | 0.0068 (7)  | -0.0032 (6) | -0.0048 (7) |
| 05  | 0.0280 (9)  | 0.0137 (8)  | 0.0232 (8)  | -0.0024 (7) | -0.0033 (7) | 0.0003 (6)  |
| O6  | 0.0191 (8)  | 0.0201 (9)  | 0.0234 (8)  | 0.0000 (7)  | -0.0035 (6) | -0.0009 (7) |
| 07  | 0.0405 (10) | 0.0178 (8)  | 0.0195 (8)  | -0.0069 (8) | -0.0025 (7) | 0.0026 (7)  |
| 08  | 0.0220 (7)  | 0.0185 (8)  | 0.0143 (7)  | 0.0015 (6)  | 0.0039 (6)  | 0.0016 (6)  |

Geometric parameters (Å, °)

| C1—O1 | 1.241 (3) | C10—O7 | 1.237 (3) |
|-------|-----------|--------|-----------|
| C1—O2 | 1.271 (3) | C10—O8 | 1.275 (3) |
| C1—C2 | 1.549 (3) | C11—N4 | 1.321 (3) |

| C2—N1                                                | 1.497 (3)   | C11—N5                                                                                                                                                                                 | 1.328 (3)            |
|------------------------------------------------------|-------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|
| C2—C3                                                | 1.524 (3)   | C11—N3                                                                                                                                                                                 | 1.332 (3)            |
| С2—Н2                                                | 1.0000      | C12—N6                                                                                                                                                                                 | 1.319 (3)            |
| C3—C4                                                | 1.527 (3)   | C12—N7                                                                                                                                                                                 | 1.329 (3)            |
| С3—Н3С                                               | 0.9900      | C12—N8                                                                                                                                                                                 | 1.331 (3)            |
| C3—H3D                                               | 0.9900      | N1—H1A                                                                                                                                                                                 | 0.9100               |
| C4—C5                                                | 1.529 (3)   | N1—H1B                                                                                                                                                                                 | 0.9100               |
| C4—H4C                                               | 0.9900      | N1—H1C                                                                                                                                                                                 | 0.9100               |
| C4—H4D                                               | 0.9900      | N2—H2A                                                                                                                                                                                 | 0.9100               |
| C5—O4                                                | 1.257 (3)   | N2—H2B                                                                                                                                                                                 | 0.9100               |
| С5—О3                                                | 1.257 (3)   | N2—H2C                                                                                                                                                                                 | 0.9100               |
| C6—O6                                                | 1.251 (3)   | N3—H3A                                                                                                                                                                                 | 0.8800               |
| C6—O5                                                | 1.253 (3)   | N3—H3B                                                                                                                                                                                 | 0.8800               |
| C6—C7                                                | 1.541 (3)   | N4—H4A                                                                                                                                                                                 | 0.8800               |
| C7—N2                                                | 1.495 (3)   | N4—H4B                                                                                                                                                                                 | 0.8800               |
| С7—С8                                                | 1.528 (3)   | N5—H5A                                                                                                                                                                                 | 0.8800               |
| С7—Н7                                                | 1.0000      | N5—H5B                                                                                                                                                                                 | 0.8800               |
| С8—С9                                                | 1.533 (3)   | N6—H6A                                                                                                                                                                                 | 0.8800               |
| C8—H8C                                               | 0.9900      | N6—H6B                                                                                                                                                                                 | 0.8800               |
| C8—H8D                                               | 0.9900      | N7—H7A                                                                                                                                                                                 | 0.8800               |
| C9—C10                                               | 1.527 (3)   | N7—H7B                                                                                                                                                                                 | 0.8800               |
| С9—Н9А                                               | 0.9900      | N8—H8A                                                                                                                                                                                 | 0.8800               |
| С9—Н9В                                               | 0.9900      | N8—H8B                                                                                                                                                                                 | 0.8800               |
| 01—C1—O2                                             | 126.4 (2)   | С10—С9—Н9В                                                                                                                                                                             | 109.1                |
| 01-C1-C2                                             | 118.4 (2)   | С8—С9—Н9В                                                                                                                                                                              | 109.1                |
| 02 - C1 - C2                                         | 115.21 (18) | H9A—C9—H9B                                                                                                                                                                             | 107.8                |
| N1 - C2 - C3                                         | 112.11 (16) | 07-010-08                                                                                                                                                                              | 123 2 (2)            |
| N1-C2-C1                                             | 109 42 (16) | 07                                                                                                                                                                                     | 1196(2)              |
| $C_{3}$ $C_{2}$ $C_{1}$                              | 113 44 (18) | 08-010-09                                                                                                                                                                              | 117 14 (19)          |
| N1-C2-H2                                             | 107.2       | N4-C11-N5                                                                                                                                                                              | 1202(2)              |
| $C_{3}$ $C_{2}$ $H_{2}$                              | 107.2       | N4-C11-N3                                                                                                                                                                              | 120.2(2)<br>120.4(2) |
| C1 - C2 - H2                                         | 107.2       | N5-C11-N3                                                                                                                                                                              | 120.1(2)<br>1194(2)  |
| $C_{2}^{-}$ $C_{3}^{-}$ $C_{4}^{-}$                  | 112 99 (17) | N6-C12-N7                                                                                                                                                                              | 119.7(2)<br>119.7(2) |
| $C_2 = C_3 = H_3C$                                   | 109.0       | N6_C12_N8                                                                                                                                                                              | 119.7(2)<br>121.3(2) |
| $C_2 = C_3 = H_3 C$                                  | 109.0       | N7_C12_N8                                                                                                                                                                              | 121.3(2)<br>1100(2)  |
| $C_{2}$ $C_{3}$ $H_{3}$ $D_{1}$                      | 109.0       | $C_{2}$ N1 H1A                                                                                                                                                                         | 100 5                |
| $C_2 = C_3 = H_3 D$                                  | 109.0       | $C_2$ -N1-H1B                                                                                                                                                                          | 109.5                |
|                                                      | 107.8       | HIA NI HIR                                                                                                                                                                             | 109.5                |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | 107.8       | $\frac{111}{110}$                                                                                                                                                                      | 109.5                |
| $C_{3}$ $C_{4}$ $H_{4}C_{5}$                         | 112.07 (17) | HIA NI HIC                                                                                                                                                                             | 109.5                |
| $C_5 = C_4 = H_4C$                                   | 109.1       | HIA-NI-HIC                                                                                                                                                                             | 109.5                |
| $C_{2}$ $C_{4}$ $H_{4}$                              | 109.1       | $\frac{1110}{110} - \frac{1110}{110} = \frac{1100}{100}$                                                                                                                               | 109.5                |
| $C_5 = C_4 = H_4 D$                                  | 109.1       | C7 = N2 = H2R                                                                                                                                                                          | 109.5                |
|                                                      | 109.1       | C = N2 = H2D                                                                                                                                                                           | 109.5                |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | 107.0       | $\Pi \angle A \longrightarrow \Pi \angle \Box \square \angle \Box \square \angle \Box \square \square$ | 109.5                |
| 04 - 05 - 03                                         | 124.40 (19) | $U_1 - N_2 - \Pi_2 U_1$                                                                                                                                                                | 109.5                |
| 04 - 03 - 04                                         | 117.95 (16) | H2A - N2 - H2C                                                                                                                                                                         | 109.5                |
| 05-05-04                                             | 117.0(2)    | $\Pi \Delta D \longrightarrow \Pi \Delta D \longrightarrow \Pi \Delta D$                                                                                                               | 109.3                |
|                                                      | 120.2(2)    | CII—N3—H3A                                                                                                                                                                             | 120.0                |
| 00-00-0/                                             | 110.0 (2)   | С11—№3—НЗВ                                                                                                                                                                             | 120.0                |

| O5—C6—C7    | 117.06 (19)  | H3A—N3—H3B   | 120.0       |
|-------------|--------------|--------------|-------------|
| N2—C7—C8    | 111.79 (18)  | C11—N4—H4A   | 120.0       |
| N2—C7—C6    | 108.12 (16)  | C11—N4—H4B   | 120.0       |
| C8—C7—C6    | 115.78 (18)  | H4A—N4—H4B   | 120.0       |
| N2—C7—H7    | 106.9        | C11—N5—H5A   | 120.0       |
| С8—С7—Н7    | 106.9        | C11—N5—H5B   | 120.0       |
| С6—С7—Н7    | 106.9        | H5A—N5—H5B   | 120.0       |
| С7—С8—С9    | 112.17 (17)  | C12—N6—H6A   | 120.0       |
| С7—С8—Н8С   | 109.2        | C12—N6—H6B   | 120.0       |
| С9—С8—Н8С   | 109.2        | H6A—N6—H6B   | 120.0       |
| C7—C8—H8D   | 109.2        | C12—N7—H7A   | 120.0       |
| C9—C8—H8D   | 109.2        | C12—N7—H7B   | 120.0       |
| H8C—C8—H8D  | 107.9        | H7A—N7—H7B   | 120.0       |
| С10—С9—С8   | 112.69 (17)  | C12—N8—H8A   | 120.0       |
| С10—С9—Н9А  | 109.1        | C12—N8—H8B   | 120.0       |
| С8—С9—Н9А   | 109.1        | H8A—N8—H8B   | 120.0       |
| O1-C1-C2-N1 | 11.3 (3)     | O6—C6—C7—N2  | 18.9 (3)    |
| O2—C1—C2—N1 | -170.89 (17) | O5—C6—C7—N2  | -163.9 (2)  |
| O1—C1—C2—C3 | 137.29 (19)  | O6—C6—C7—C8  | 145.18 (19) |
| O2—C1—C2—C3 | -44.9 (2)    | O5—C6—C7—C8  | -37.6 (3)   |
| N1—C2—C3—C4 | 63.7 (2)     | N2-C7-C8-C9  | -83.4 (2)   |
| C1—C2—C3—C4 | -60.8 (2)    | C6—C7—C8—C9  | 152.21 (18) |
| C2—C3—C4—C5 | 174.99 (19)  | C7—C8—C9—C10 | -73.5 (2)   |
| C3—C4—C5—O4 | -75.2 (3)    | C8—C9—C10—O7 | -36.4 (3)   |
| C3—C4—C5—O3 | 104.4 (2)    | C8—C9—C10—O8 | 146.12 (19) |

### Hydrogen-bond geometry (Å, °)

| D—H···A                     | <i>D</i> —Н | $H \cdots A$ | $D \cdots A$ | D—H··· $A$ |
|-----------------------------|-------------|--------------|--------------|------------|
| N1—H1A…O8                   | 0.91        | 1.89         | 2.795 (2)    | 179        |
| N1—H1B····O4 <sup>i</sup>   | 0.91        | 1.84         | 2.738 (2)    | 170        |
| N1—H1C···O2 <sup>i</sup>    | 0.91        | 2.13         | 3.017 (2)    | 165        |
| N2—H2A···O2 <sup>ii</sup>   | 0.91        | 2.09         | 2.998 (2)    | 173        |
| N2—H2B····O7 <sup>iii</sup> | 0.91        | 2.16         | 2.740 (2)    | 120        |
| N2—H2C···O5 <sup>iii</sup>  | 0.91        | 1.92         | 2.817 (3)    | 170        |
| N3—H3A···O2 <sup>i</sup>    | 0.88        | 2.08         | 2.900 (3)    | 154        |
| N3—H3B…O3                   | 0.88        | 2.08         | 2.841 (3)    | 145        |
| N4—H4A····O3 <sup>iv</sup>  | 0.88        | 1.95         | 2.826 (2)    | 173        |
| N4—H4B…O1 <sup>i</sup>      | 0.88        | 2.22         | 3.095 (2)    | 170        |
| N5—H5A····O4 <sup>iv</sup>  | 0.88        | 1.96         | 2.831 (2)    | 172        |
| N5—H5B…O6                   | 0.88        | 2.35         | 3.092 (3)    | 142        |
| N6—H6A…O6                   | 0.88        | 2.04         | 2.897 (2)    | 165        |
| N6—H6B…O8 <sup>v</sup>      | 0.88        | 1.97         | 2.824 (2)    | 164        |
| N7—H7A…O5                   | 0.88        | 2.00         | 2.851 (2)    | 163        |
| N7—H7B····O8 <sup>vi</sup>  | 0.88        | 2.02         | 2.775 (3)    | 143        |
| N8—H8A····O7 <sup>v</sup>   | 0.88        | 2.08         | 2.954 (3)    | 170        |

| N8—H8B…O1 <sup>vi</sup>                                                | 0.88                           | 2.23                   | 2.953 (3)                                               | 140                                |
|------------------------------------------------------------------------|--------------------------------|------------------------|---------------------------------------------------------|------------------------------------|
| Symmetry codes: (i) $-x+1$ , $y+1/2$ , $-z$ ; (ii) $x$ , $y$ , $z+1$ ; | (iii) $-x+1$ , $y-1/2$ , $-z+$ | 1; (iv) -x+2, y+1/2, - | - <i>z</i> +1; (v) <i>x</i> +1, <i>y</i> , <i>z</i> +1; | (vi) - <i>x</i> +1, <i>y</i> +1/2, |
| -z+1.                                                                  |                                |                        |                                                         |                                    |



Fig. 1

